4,707 research outputs found

    Modelling end-pumped solid state lasers

    Get PDF
    The operation dynamics of end-pumped solid-state lasers are investigated by means of a spatially resolved numerical rate-equation model and a time-dependent analytical thermal model. The rate-equation model allows the optimization of parameters such as the output coupler transmission and gain medium length, with the aim of improving the laser output performance. The time-dependent analytical thermal model is able to predict the temperature and the corresponding induced thermal stresses on the pump face of quasi-continuous wave (qcw) end-pumped laser rods. Both models are found to be in very good agreement with experimental results

    Wi-Fi network testing using an integrated Evil-Twin framework

    Get PDF
    This work intends to present a newly developed Wi- Fi vulnerability analysis and exploitation framework with the objective of increasing Wi-Fi security. The developed framework focuses primarily on client-side vulnerabilities, currently a weak- ness on Wi-Fi connections, but can be extended to support any type of Wi-Fi attack. The framework was designed and is in- tended to be used by security auditors when performing intrusion tests on Wi-Fi networks. It can also be used as a proof-of-concept tool meant to teach and raise awareness of the risks involved when using Wi-Fi technologies. The developed framework is based on open-source software and is also available as open- source software, allowing developers to extend its functionality.info:eu-repo/semantics/acceptedVersio

    Characterisation and calibration of a scintillating fibre detector with > 4000 multi-anode photomultiplier channels

    Full text link
    In the Kaos spectrometer at the Mainz Microtron a high-resolution coordinate detector for high-energy particles is operated. It consists of scintillating fibres with diameters of 4000 multi-anode photomultiplier channels. It is one of the most modern focal-plane detectors for magnetic spectrometers world-wide. To correct variations in the detection efficiency, caused by the different gains and the different optical transmittances, a fully automated off-line calibration procedure has been developed. The process includes the positioning of a radioisotope source alongside the detector plane and the automated acquisition and analysis of the detector signals. It was possible to characterise and calibrate each individual fibre channel with a low degree of human interaction.Comment: Nucl. Instrum. Meth. A (2012

    A proposal for relative time petri nets

    Get PDF
    Copyright © 2005, IEEEPetri nets are a graph-based modelling formalism which has been widely used for the formal specification and analysis of concurrent systems. A common analysis technique is that of state space exploration (or reachability analysis). Here, every possible reachable state of the system is generated and desirable properties are evaluated for each state. This approach has the great advantage of conceptual simplicity, but the great disadvantage of being susceptible to state space explosion, where the number of states is simply too large for exhaustive exploration. Many reduction techniques have been suggested to ameliorate the problem of state space explosion. In the case of timed systems, the state space is infinite, unless analysis is restricted to a bounded time period. In this paper, we present a Petri net formalism based on the notion of relative time (as opposed to the traditional approach of dealing with absolute time). The goal is to derive a finite state space for timed systems which have repeating patterns of behaviour, even though time continues to advance indefinitely.Joseph Kuehn, Charles Lakos, Robert Esse

    Component-based design and analysis: a case study

    Get PDF
    ©2003 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.In this paper, we introduce a component-based design methodology and present a practical analysis approach that makes use of the modular nature of component-based designs to alleviate the state space explosion problem, a well-known obstacle to system verification. In addition, the approach is illustrated by application to a non-trivial case study: the production cell. It is shown that not only the basic consistency property, viz. the freedom from unexpected reception and deadlock, but also other important safety properties in the design can be proved.Yan Jin, Charles Lakos, Robert Esse

    Femtosecond study of the interplay between excitons, trions, and carriers in (Cd,Mn)Te quantum wells

    Full text link
    We present an absorption study of the neutral and positively charged exciton (trion) under the influence of a femtosecond, circularly polarized, resonant pump pulse. Three populations are involved: free holes, excitons, and trions, all exhibiting transient spin polarization. In particular, a polarization of the hole gas is created by the formation of trions. The evolution of these populations is studied, including the spin flip and trion formation processes. The contributions of several mechanisms to intensity changes are evaluated, including phase space filling and spin-dependent screening. We propose a new explanation of the oscillator strength stealing phenomena observed in p-doped quantum wells, based on the screening of neutral excitons by charge carriers. We have also found that binding heavy holes into charged excitons excludes them from the interaction with the rest of the system, so that oscillator strength stealing is partially blockedComment: 4 pages, 4 figure

    Low-energy electronic properties of clean CaRuO3_3: elusive Landau quasiparticles

    Full text link
    We have prepared high-quality epitaxial thin films of CaRuO3_3 with residual resistivity ratios up to 55. Shubnikov-de Haas oscillations in the magnetoresistance and a T2T^2 temperature dependence in the electrical resistivity only below 1.5 K, whose coefficient is substantially suppressed in large magnetic fields, establish CaRuO3_3 as a Fermi liquid (FL) with anomalously low coherence scale. Non-Fermi liquid (NFL) T3/2T^{3/2} dependence is found between 2 and 25 K. The high sample quality allows access to the intrinsic electronic properties via THz spectroscopy. For frequencies below 0.6 THz, the conductivity is Drude-like and can be modeled by FL concepts, while for higher frequencies non-Drude behavior, inconsistent with FL predictions, is found. This establishes CaRuO3_3 as a prime example of optical NFL behavior in the THz range.Comment: 12 pages, 21 figures including supplemental materia
    corecore